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REACTION OF A PIEZOCERAMIC SHELL TO CONCENTRATED EFFECTS’

L.A. FIL'SHTINSKII and L.A. KHIZHNIAK

Equations are derived for the theory of shallow piezoceramic shells polarized along
the generators. These equations are used to construct the Green's matrix and to

investigate the reaction of an infinite and a finite shell to concentrated effects.
The asymptotic is written down for the mechanical forces and moments as well as for
the electrical field potential in the neighborhood of the point of application of

the concentrated functional.

Equations for piezoceramic shells of revolution have been obtained in /1/. Application
of the asymptotic method /2/ to the derivation of the equations for the theory of piezoceramic
shells is examined in /3/.

1. Equations of a piezoceramic shell in displacements. Let a closed shallow
piezoceramic shell be referred to an orthogonal coordinate system a,f,y(x, § coincide with
the lines of principal curwature). The shell is polarized along the axis . In this case
the equations of state have the form /4/

Oy = C338q + Cjatg — eszEa, Tap = Csa€ap — elsEe (1.1)
0p = C138q + c18p — €13Eq, Dy = ey5¢ap + enkg
Do = e338q + e13eg + e53Eq, D, = &y, E,

Here &g, Op, Tap: €a) £g, Eap are components of the stress and strain tensors, Eg, Eg, Ey, Do, Dy,
D, are the coresponding vector components of the electrical field intensity and the in-
duction, ¢; are elastic, e; are piegzoelectric constants, and ¢&;;, &3 are the dielectric perm-
ittivities of the medium.

Making use of the usual relationships of the theory of very shallow shells /2,5/ as well
as of the Maxwell equations for dielectrics divD =0, £ = —grad ¢ (¢p is the field potential),
we arrive at the system of equations in displacements

Lijuj= Py, Liy=Ly (i,j=1,2,3,4) 1.2)
Lu=h(2 02+ 24.6%), Lio=—tg (cn+ cu) 0:0

L= '%' (kress + kac13) 01, Lag= _l}_;_ (xexs -+ ksCaz) By

Lu=h (02 + 35 0%, Lu= 5 (e + o) 020s

Lg, '2‘ (k1633 4~ koe13) 81, Log=h (%312 + % (?g’)

Lz = h (ksco5 + 2k1kacrs + ka®er)) + %c; ot 4 :E;CB}: ot 4

RS (2¢; &
_(_1.‘2‘1‘.4'1'32_“4) 0,205%, Lyy= — h(—f%.:— 92 + % 33’)

gi+i

0 =208/0a, 0;=208/3p, 8,0y =L
1 jOc, 8y /0B, 8,'0, oy

Here wu;(j=1,2,3) are components of the displacement vector, u, = @, P,(i=1,2,3) are
components of the surface load vector, P, =0,k k = R, k, = R, are the shell thickness and
principal shell curvatures, and A and B are the coefficients of the first quadratic form (for
simplicity we later consider a cylindrical shell R, = oo, and in addition we set A = B = R,).

It was assumed in the derivation of (1.2) that the shell is in a vacuum and its surfaces
are not electrified. 1In this case it is possible to set Dy =E,=0, ¢ =¢(x,p)

2. Fundamental solution of the system (1.2). At the points @y, Bo + mT (m = 01,
sw—1), let a T'-periodic system of concentrated forces with components Py =P,, Py =P,
P, = P; be applied to the shell (Fig.l).
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In this case we represent the solution of the system in the form

léimAij\yj (2,]=1,2,3.4} (2.1}

where 4;; are the corresponding cofactors of the matrix elements of

the differential operators [ L;;{, while the functions ¥, are relat~
ed to the fundamental solution £ (a,y) by

[:A

¥ PLE (a, B)
W= — T, Fi=AYR (2.2)
8y = — ¢y %g/12, £ = cyqeqy + 45t

The T-periodic fundamental solution £ {x,8) is detemmined
from the equation

L@ 9 E (e B=0(@) 3 86 —KD) (2.3)

Fig.l

3 r
L(dy 8y =La (01, 30+ Y (F) 2 ar¥aysw
=0

5
Lo (61, ag) = Z _:_i_.. & ‘iiagﬁ—zi
= 0
By = "%ZL [— enad + 211 (6187 — 3c0a?) + 2e13M — caa (€13% 4+ dens?)]
1
ay == 'Ti' IBQ + 2rs (611933 + ze“f) —t (r” + 5152} — €11 (20‘¢§ Cd
2eufess — 2eggish — eg¥en)l, 3= -1% {— eayegq {exs® -+ Cubsst
8) -+ g + 2rs{2essf - casers) — A {coar® - cua€s?) — esserst],
g == % [233q - cﬂg + 2833 (ell‘ls + elsl‘«‘la) wa— 0337" —— Cllesazl st
1
o cuen’f, agpse o~ -1-1-2~ CasCaqft
ay =8y =0, & = (61g" —cuiCar) £ 85 = cuslen (era® —
Cyifas) + €15 (CenCys — €xa€aa) + oMl [ =645 T 204 ¢
c1sf — 11055
Fom=gyy by, S = 0y + G 1= Cyfag T 2644,
A== ey 1 2f

1N = Cia€ys — Crylysy O = eyy8es + 28n3fy § = 1105 -+ 2esaf
€ == Cyu8an + CaaByyy B == Epelys + £nd”

Using the procvedure of /6—9/, we find the fundamental solution in the form of a supsr-
position of exponential functions of their complex variables

E(a—ao.ﬁ—ﬁo)w%é'o(a—ao)+ (2.4

L3 o X *)
2 exp [iko ({7 — L) sgn (2 — 20l
+ Re ; ;ﬂ (ko) A, ()

2= (3 15— () o1 L1

2
W =B+ ala, W =+ A, Im A >0
Ay (5)"'-':":? A (@) Ap(g)=— -(—,;"};Tﬁ“[:(z‘ 1) (k=1,2,..0
2 = [{Ry/R) {as'la)l (1 + &

e expression L (x,y) is defined in (2.3), For shells from the piezoceramics PZT-4,
PZT-5 and certain others, the quantities 2z, are siimple roots of the characteristic poly-
nomial Ay (3) for each fixed k.

3. The principal part of the fundamental solution. It agrees with the funda-
mental solution of the operator FL,{8, &) and has the form

Eolc —ao, B~ o) = —4~go (o — i) + BEERY
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5 . 3
2 exp {ikw (L, — &yp) 381 (@ — )]
+ Re Z ,Zl. ([l &' (zy)
V==l k=

go@ ==l G=Btza Lw=Potzee Imz>0

Here 3z, are roots of the characteristic polynomial

5
a. N
A(z):Lo(Z, 1)= Zzlng
=0 °
It can be shown that the following relations hold that are valid for any natural k:

(3.2)

.ﬂ., qg=9

as

50y [0, ¢g=0,1,2,...,8

—'_-k— ==
& A )

By using (3.2) closed expressions can be obtained for the higher derivatives of E, (z, ).
For instance

5 9
s 1 2, wf,
8,*0,°E,q (o, f) = —T—[_ Im E W XATAY zzv) ctg 2v ] (3.3
v=1

4. Green's matrix for a finite piezoceramic shell. We represent the components
of the Green's matrix in the form (no summation over repeated subscripts)

uij (av ﬂa al)! ﬁo) = uijo (a‘ aO) + A”Wj (4.1)
P,
¥;=— gtz Cie. B, oo Bo)

o

10
6 @, B, aa, fo) =7 Re 37, 3", B explikul¥] + Ele —an, b —Bo

=] v==1

Here u,;,®(a,a,) is the general solution of the system (1.2) for P;=0 (j= 1,2,3,4) BY
are constants determined from the boundary conditions on the shell endfaces, E (a,p) is the
fundamental solution of (2.4), uy(a, Bya,, By) is the displacement (i =1,2,3) and potential
of the electrical field (i =4) at the point (a,f) .due to the action of the concentrated
force Pij=1,2,3) or the charge P, at the point (o, fy). The second component in the expres-
sion for the function G is the regular solution of the homogeneous eguation (2.3).

The forces and moments in the shell as well as the intensity vector and the electrical
induction vector are expressed in terms of the Green's matrix caomponents (4.1) by using (1.1),
geometric relationships, and Maxwell's equations.

The representations (4.2) afford the possibility of satisfying four mechanical and one
electrical boundary condition.-on each of the endfaces because of the slection of the constants

B and the functions u;,° (a, ay).

5. Action of radial concentrated forces on a cylindrical piezoceramic shell.
Let us consider a piezoceramic shell finite in @, and closed in f and loaded at the points
a=0a,B=p+ml (m=0,1,...,0—~1) Dby a T-periodic system of radial concentrated forces.
We assume that the shell is under moving-hinge clamping conditions, while the endfaces are
covered by grouned electrodes. Then the mechanical and electrical boundary conditions on the
endfaces ¢ =0 and « =, take the form

In=M,=v=w=¢=20 (5.1)
According to (1.2), (2.1) and (4.1) we have
Ugg = W (a, ﬁ) = Asa‘ya -+ um" (5.2)
Ugg = @ (2, B) = Ap¥s + s’
s 2
he i o X L
Agg = v Z bjasag 25y%,  Agp= 7 ; bjlsa;-l152z:
G0
b® = — cyqt, 5, = [—cam — ¢y %€ + 2esrs — ess%cyy —

s
2e15635C54 + 2338t — casr®l, B, = [— ¢l — £11644% +
261475 — €15%4 — 2655815611 + 138°— cuit?], B = —cpp
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43 o 3 2
bt? = cp, 1Y = 15 (cpaCm— €13%) + cuany By = 0
m = 333511 + 811045 P = €xC13 — €1m

2ap o
Ugs —-—ZBv exp (zy’a) — mBs
exp (z,°z) 120,07 ¢
ug'= 3 By -"'“-) ( ,.,———”}aB°—J- °
43 VZIJ v zvo + Caoda BF m 5 Bg
2" = Zg, 5" = Zgy 28° = 2, 3° = ~ 3,

where B, (v=1,2,...,6) are arbitrary constants.
Results of computing the gquantities

T

w (o 1 ¢
<W>=m¢;§m, <q)>=-r;5 («, B) dB (5.3)

0

o Pgbo Pybyt?

= Th%r [ o= = hazl

along the coordinate.a are represented in Figs.2 and 3 for a cylindrical shell from the piezo-
ceramic PZT-5 /4/ loaded by radial concentrated forces Py for Ry/h=50,0=6 and relative
length of the shell [, = L/Ry=1. The curves Jand 2 are constructed for f,=0, a,= 0,5, and

0.25%, respectively. The dashed curve corresponds to an infinite shell for the same values of
the parameters,

st i > o~
<w) / \\ 0.5 - == -
(>
) /4
y 2 f N
A 0 I 2.5 « f
7
g 0.5 P Yy - ;
Fig.2 Fig.3

For ly,>»2 the deflections in a finite shell subjected to radial forces applied at the
points =105, Bo=ml {m=10,1,..., 0 —~1) are practically in agreement with the corresponding
deflections in an infinite shell. The average potential (g eguals zero at the endfaces for
a finite shell, while it asymptotically approaches the lines «<gy = *0.5 according to the law

@y == 0.5 sgn & {1 — Im [i exp (ize@)]}
for an infinite shell.

The asymptotic values of the bending moments and transverse forces in the neighborhood of
the point of application of the concentrated functional have the form

5
Mk=ulm2dvmg‘)¢’1(Cv) (k==1,2,3), Ma=H (5.4)
Ny=x1Im 2 A De (Gy)  (k=1,2)

= — Pyf6Taq, dy= (}3 b-»zr"‘)/z.v )

m = {cpts® + er)/w, mP = (epn? + endo

'n‘v” 2zl 0, 1) = 2y (204 + 013 + cu2?)/2R,
P = = (cy38y® + Cu2v + c11)/2R,

§ sgna

. (G =1n 2sin =2E7)

D, (L) =cig C..

The remaining mechanical, as well as electrical guantities, are bounded.
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